
WAVES ON THE SURFACE OF A THIN LAYER OF VISCOUS LIQUID 

V. E .  N a k o r y a k o v  a n d  I .  R.  S h r e i b e r  UDC 532.592 +594 
532.62 

Under the assumption that the boundary layer  approximation for  the original equations is 
valid, we show the possibili ty of the existence of progress ive  waves on the surface of a 
ver t ical ly  flowing film when surface tension is neglected. F rom the sys tem of equations 
obtained for  a thin layer  of viscous liquid flowing down an inclined plane,one equation for  
perturbat ions of a thin film follows. Steady solutions of this equation allow periodic dis-  
continuous solutions of the roll-wave type. 

1. Wave-type flows of fi lms have been investigated in [1-4]. A detailed survey of fundamental inves- 
tigations is to be found in [3, 5]. 

In the present  paper,  under the assumption of the existence of quasisimple waves, an equation govern- 
ing the propagation of perturbat ions on the surface of a film of viscous liquid is obtained by the method of 
integral relat ions.  Steady solutions of the equation obtained allow discontinuous periodic solutions of the 
roll-wave type [5, 6]. The influence of surface tension on the s t ructure  of the roll waves is investigated. 

tn [3] it has been shown that when the thickness h of the film is less  than the length of the wave under 
consideration,  the following boundary layer  approximation to the original equations is valid 
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The boundary condition on the rigid surface has the form 

while those on the surface of the film are 

u (z ,  O) = v ( z ,  O) = 0 (1.4) 
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V,  = ~ § U1 T 

O~h 
P = -- ~ W r  (1.7) 

Here, p is  the longitudinal and v is the t r ansverse  velocity component, x, y are the longitudinal and 
t r ansve r se  coordinates,  co is the angle of inclination of the surface,  a is the coefficient of surface tension 

(Fig. 1), p is the density of the liquid, g is the f ree- fa l l  accelerat ion,  and 
v is the viscosi ty  coefficient. 

Integrating Eqs. (1,1)-(1.3) ac ross  the layer  f rom zero  to the su r -  
face of the film and using relat ions (1.4)- (1.7), We obtain 
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We prescr ibe  the velocity profile in the fo rm [1, 2, 4] 

a =  U~] (,i), 'l =-- y / h 

where U 1 is the velocity at the surface of the film. 

We introduce the notation 

,1 1 

0 0 ~1~0 

Equations (1.8), (1,9), writ ten in t e rms  of the mean flow velocity, 

assume the form 

h 
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In [1, 2] and a number of other papers, the average over a cross section of the square of the velocity 
distribtltion function and the square of the mean value of this function is assumed to be equal in the deriva- 
tion of the basic equations. The necessity for a valid averaging of Eq. (1.8) has been clearly demonstrated 
in [3]. It is established below that the existence of quasisimple waves on the surface of a film and steady 
solutions of the roll-wave type can be demonstrated, starting only from the equations as written in the form 
(1.10), (1.11). 

The simplest form of the profile satisfying steady flow of the film is 

u---" Ul ( 2yh h~Y2 ) 

O~ = 2//3, • = 8 /15 ,  7 1  = t.4, (~1 ~--- 0.2, ~ / a  ----- 3 (1.12) 

Introducing perturbations of the velocity and the surface f rom their  mean values by the relations 

h = h o + h + ,  U =  U o + ~ +  

and assuming that the coefficients in front of the viscosi ty t e rm and the t e rm that takes the surface tension 
into account are  small,  we obtain with an accuracy  up to t e rms  of second order  in small  quantities the fol- 
lowing sys tem of equations for h+ and u+ 

Ou+ T. Ou+ ou~. ~ aluo ~ (Oh. _ h  Oh. 
0t t - T l u 0 ~  +'~lu+ 0~: --  ho ~ \ Ox + Ox ] 

2Uou~ Oh+ ~ ~ U o h  + ~vu~. ~ 03h~ 
= - - - ~  + V"  Ox-Z" 

Oh+ U Oh+ Ou+ . h  Ou~ _ 0  (1.14) ot + o--~+u+Oo-~-+h~ -v' '+ o~ 

In the derivation of (1.13) and (1.14) it was assumed that the averaged quantities are subject to the 
relationships for  steady motion [2]. We shall make a number of comments  on the sys tem of equations (1.13), 
(1.14) we have obtained. 

For  U 0 = 0 and (p = 0,the sys tem (1.13), (1.14) reduces to the shal low-water  equations with fr ict ion at 
the bottom taken into account. In this sys tem,  progress ive  waves are possible - g r a v i t y  waves on the su r -  
face of a heavy liquid of small  depth. 

For  (p =90 ~ and U 0 #0 the sys tem permits  solutions in the form of progress ive  waves, the role of the 
t e rm g(ah/ax) being played by ~lU02h0 -1 (Oh/~x), even in the case of ra ther  long waves when the effect of 
surface tension forces  can be neglected. 

In the sys tem (1.13), (1.14),progressive waves exist  when ~p var ies  in a continuous manner .  

Using Uizem's  method [7], we shall seek a solution of the sys tem (1.3), (1.4) in the fo rm of a quasi-  
simple wave [8] 
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O~h ' D I h + d x  u+ = ah+ -+- bh+ 2 -r c ~z~ ~ (1.15) 

The c o e f f i c i e n t s  a,  b, c, and D are d e t e r m i n e d  f r o m  the condi t ion  that E q s .  (1.13) and (1.14) be ident i -  
We a s s u m e  that the c o e f f i c i e n t s  a and b are  of the o r d e r  unity,  whi le  D and c,  h+ are  of the ord er  ~ ~ ca l .  

u4fU0. 

With an a c c u r a c y  up to  ~2 an equat ion fo r  h+ fol lows f r o m  the s y s t e m  (1.13), {1.14): 

Oh, 03h+ 
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b [(71 - -  2) a 2 2Uo a aU~ 7 = -}- - ~ o  - -  - -~oJ  [4ah~ --  2 (T --  l) Uo] -1 

( ~ va 2B,pUo ~ [2ah ~ + U, (l - -  TI)] -1 

c = - -  o[p(2hoa -I- (l - -  y) Uo)] -1 (1.16) 

F o r  a f i lm on a ve r t i c a l  wall  

cosqD=0, a = 0 . 7  Uo/ho,  b = 0 . 4 5  Uo/h0  ~ 
D = - - 3 . 9  v / h e  s, c = " r ,l pUo 

With the coef f ic ien t s  d e t e r m i n e d  above,  the d i f ferent ia l  re la t ionsh ip  (1.15) that  we have in t roduced  
t r a n s f o r m s  the s y s t e m  (1.13), (1.14) into two ident ica l  equat ions  (1.16). 

T h u s , t h e  p ropaga t ion  of an a r b i t r a l 7  p e r t u r b a t i o n  on the su r f ace  of a thin f i lm is gove rned  by the 
K e r t e w e g - d e  V r i e s  equat ion with a l o w - f r e q u e n c y  boos t ing  e n e r g y  

Oh+ ~ h+ Oh ~ho OSh 3.9'v . 
a---} - ' + t ' 7 U ~  +2"3U~ O~ ~ pUo Oz3 = h-Ti~--~' a+ (1.17} 

The r ight  side of Eq. (1.17) is r e spons ib l e  f o r  the g rowth  of m o m e n t u m  and e n e r g y  with t ime in the 
wave under  cons ide ra t i on ,  

2. Infinite g rowth  of the ampli tude is p r even t ed  by the non l inea r  t e r m ,  which "upse t s"  the p e r t u r b a -  
t ion.  A d iscont inu i ty  can  occu r ,  with su r f ace  t ens ion  inhibit ing its fo rma t ion .  We shal l  exclude f r o m  con-  
s i de r a t i on  the inf luence of su r f a c e  t ens ion  on the p r o c e s s  of wave fo rma t ion .  Then  Eq. (1.17) has d i scon-  
t inuous pe r iod ic  so lu t ions .  

We in t roduce  the s e l f - s i m i l a r  coord ina te  ~ = x - C t  into (1,17). 

- -  C Oh+ 1.7Uo 00~ -~- 2 "- h+ Oh+ ~ho ~h+ 3.9v . 
a~ + "c)U~ -~ pUo O~ "~ = --'h--~ n+ (2.1) 

In  the case  where  the th i rd  de r iva t ive  with r e s p e c t  to ~ is absent  in Eq. (2.1) we have 

- Oh1 __ j_ ~,  Oht hl Ohl 3.9vhl (2.2) 
- - C ' - - ~ - - l - . t U o - ~ - - } - 2 . 3 U o - ~ o - - ~ - =  he 

Discont inuous  pe r iod ic  solut ions  of this equat ion  a re  inves t iga ted  in [9, 10]. 

I n  [10] Eq. (2.2) is inves t iga ted  as a model  equation,  govern ing  a s y s t e m  of ro l l  waves .  In t roduc ing  
F = 2 . 3  U0h0-thl, we have the equa t ion  

oP F OF 3.9v F (2.3) 
--~'-#U + ~= h 7 - -  

r = 1.7Uo --  C (2.4) 

Equat ion  (2.3) has  been  s tudied in [9, 10]. , r  to r e su l t s  of these  p a p e r s  Eq. (2.3) has  d i scon -  
t inuous pe r iod ic  so lu t ions  fo r  w = 0, and it fol lows f r o m  (2.3) tha t  the p ropaga t ion  speed of the ro l l -wave 
C = 1.7 U 0, which  co inc ides  with the p ropa ga t i on  speed  of a suff ic ient ly  long p e r t u r b a t i o n  (weak discont inui ty)  
as fol lows f r o m  Eq.  (1.17). This  value is app rox ima te ly  equal  to the lowest  wave speed  on the su r face  of 
a f i lm a c c o r d i n g  to the ca lcu la t ions  of [4], 

L/Z L ~/ZZ 2L t/2 L ~/2L 2t 

Fig.  2 Fig .  3 
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Pre sc r i b ing  the wavelengthL and using relat ions of the 
Rankine-Hugoniot  type [9] at the discontinuities, we obtain an ex- 
p ress ion  for  the thickness of the l ayer  in the region where func- 
tion h i is continuous. 

i.7 

Fig. 4 
A picture of the surface of the film according to (2.5) is shown 

in Fig. 2. 

The solution (2.5) satisfies the condition: the energy of the wave up to the discontinuity is greater 
than it is after the discontinuity [9]. 

Thus the possibility of the existence of a "noneapillary wave" on the surface of a vertical film is 
demonstrated. 

We shall estimate the influence of surface tension on the steady pattern of a roll wave. Proceeding 
as in the investigation of shock waves [8], we represent the general solution in the interval of continuity in 
the form 

h+ = hi + f (2.6) 

where h i is given by Fq. (2.5) and f is a small  correct ion,  taking surface tension into account. Inserting 
(2.6) into (1.17), writ ten in t e rms  of the se l f - s imi la r  variable ~ = x - C t ,  and linearizing, we have the equa- 
tion for  f 

~-~ --k o ~ = 0  

' l='-~-----~',  k-- 3.9 We r i o T '  We = ~ (2.7) 

Introducing 

~h = ~lk-'l., r ---- 0] / 0, h 

we reduce Eq. (2.7) to A i ry ' s  equation [11] 

0 ~ O / 0 ~ h  ~ - -  ~hqb = 0 ( 2 . 8 )  

The origin nl=O is at the center  of the region of continuity with h=h  0. It is known [11] that Eq. (2.8) 
has osci l la tory  solutions for  7 h < 0 and monotonic ones for  nl > 0. Analyzing solutions of (2.7) on the basis  
of the known solution of (2.8) [11] in the region of continuity, we can state that qualitatively a steady wave 
on the surface of the fi lm must have the shape shown in Fig. 3. 

Figure 4 shows the shape of the surface of a film recorded by the shadow method during the l a t t e r ' s  
flow along the surface of a ver t ical  tube of large diameter  at Re ~ 40. Such a pat tern has been observed in 
many experiments  connected with the investigation of wave formation on films [5]. 

Comparing experiment with theory,  one can  speak only of a qualitative s imilar i ty  of the p rocesses  
and of an approximate periodici ty of the wave p rocess .  
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